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FERRO- AND ANTIFERROMAGNETISM
IN A CUBIC CLUSTER OF SPINS

I. INTRODUCTION

The exact three-dimensional solution of the Heisenberg model for ferromagnetism is not

tractable for an infinite lattice. There are various approximate solutions, some of which in-

volve the exact solution for some small cluster of spins. 12 In addition, a number of solutions
3exist in the literature for a small number of spins in various configurations. This report gives

the exact solution to the Heisenberg Hamiltonian for eight spins, each with spin 1/z, located on

the corners of a cube. Both the eigenvalues and the thermodynamic functions have been calculated.

This simple cluster shows many of the features of an infinite magnetic material. In partic-

ular, a ferromagnetic Curie temperature TC and an antiferromagnetic N~el temperature TN can

be defined, and their values computed as a function of the strength of second and third neighbor

interactions. It is shown that, for some values of the interactions, "spiral" antiferromagnetic

states exist.4 It is also shown that there are regions in which, as the temperature is lowered,

ferromagnetic ordering begins, but at still lower temperatures, the system drops into the anti-

ferromagnetic singlet state.

The approximate solution to the infinite simple cubic lattice, using the results contained

herein, will be published in a subsequent report.

1H. CALCULATION

The Heisenberg Hamiltonian is written

= -ZJ[e + x'q + yv] (1)

in which J is the exchange constant, x and y are proportional to the strength of next nearest

and third nearest neighbor interactions, and
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Fig. 1. Cube showing the numbering of the spins.
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Fig. 2. Energy spectrum assuming only nearest neighbor interactions,
x = y 0 . The spectrum is arranged according to the vaiue of the total
spin. The Ndfel state energy is indicated even though it is not a proper
eigenstote of the system.
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The spin operator for the ith site follows the numbering of the sites shown in Fig. I.

The eigenfunctions of Eq. (i) can be classified according to the total spin S, the z-component

of the total spin MS, and the irreducible representation of the cubic group. Table I lists the sym-

metry types and energy elgenvalues for the cubic cluster. Appendix A tabulates the wave func-

tions. Appendix B gives the matrix elements of c + xL + yv for the wave functions of Appendix A.

The notation for the representations is such that a vector transforms as r 4 . The spectrum for

x = y = 0 is shown in Fig. Z.
For a given value of the total spin S, the center of gravity of the energy levels ECG is given

by the sum rule

ECG - E J [S(S + 1) - (3/4) N]/(N(N - i)] (3)

li<jI

in which N is the number of spins (each with spin 1/2) and Jij is the exchange constant between

sites i and j. Equation (3) represents a convenient check of the calculated energy eigenvalues.
6The Heisenberg approximation for ferromagnetism corresponds to calculating the partition func-

tion, using Eq. (3) for the energy eigenvalues.

The partition function for the cubic cluster is calculated by using the eigenfunctions listed

in Table I. From the partition function, the susceptibility and heat capacity for the system are

calculated. The susceptibility X given by the Curie law is written as

2 2
X = NS(S + 1) gkT (4)

in which N is the number of spins, S is the spin quantum number g = 2 and B is the Bohr mag-

neton. The cubic cluster obeys the Curie law with suitable identification of N and S. For high

temperatures, ZJ/kT << i, the necessary interpretation of N and S is

NS(S + i) = 6

and at low temperatures, ZJ/kT >> 1, the interpretation is changed to N = i with

NS(S+ i) = 20 J>0

and

NS(S+i) = 0 J<0

A plot of the susceptibility vs i/T for x = y = 0 is shown in Fig. 3 for both the ferromagnetic and

antiferromagnetic states. For convenience, the plot is presented in dimensionless form in terms
of ax vs ZJ/kT, with a = 6J/g. 2B. For the ferromagnetic case (J > 0) the slope of the curve in

Fig. 3(a) has the two asymptotic values indicated by the dashed lines. The ferromagnetic Curie

temperature Tc is defined as the position of maximum slope of the X vs l/T curve. The anti-

ferromagnetic N~el temperature TN is defined as the position of the maximum in the suscepti-

bility curve. With these definitions, the Curie and Noel temperatures have been determined as

a function of x and y. These results are shown in Fig. 4.

The heat capacity is shown for the same parameters in Fig. 5. The positions of TC and TN,

as determined from the susceptibility, are also indicated. The maximum of the heat capacity

curves differs somewhat from TC and TN, as determined from the susceptibility.
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TABLE I
SPIN, SYMMETRY TYPE AND ENERGY EIGENVALUES

FOR THE CUBIC CLUSTER OF EIGHT SPINS

Spin Representation Eigenvolue (X E/(.-2J))
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TABLE I (Continued)
SPIN, SYMMETRY TYPE AND ENERGY EIGENVALUES

FOR THE CUBIC CLUSTER OF EIGHT SPINS

Spin Representation Elgenvalue (X = E/(-2J))

"4 r ~ 12
r 4  X3 + 2X2(1+x+y)+X(-2+7x+5y+3xy-x

2)

J +(-2+2y+4x2 + 6xy-2x 3 ) =0r 4

4 r4 X=- (1 +3x) • [5- 2x + x2 + 4Y2 - y]/ 2

r2 =-2 + x -y+ [4- 7x - y + 4x2 + y2_ xy~l/2

+

X -(3+x) [5 - I 9 q2 8xy+ 4 Y2]1/2

r5 X =-2x

X=-1-x

+0 r3 22
+I"1  I x 3 + X2(5+ x + 3y) + X(-l + 18x + 14y- 9x + 6y

r 1  _y2)+ 3(-9+ 3x+ 5y+ 3x2+ 6y-y2_3x3

+ 2 2_ y =0Sx y+3xy

r +
3 X =-(1 + 2x) [2 2x +x2 2y+ y211/2

r 3
r1 X = -3x

+ x =-( + x +y)
r 
5

Z' 5 X =-2- x
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UI. DISCUSSION
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TABLE II

VALUES OF TC CALCULATED
IN THE HEISENBERG APPROXIMATION

FOR CUBIC CLUSTERS OF VARIOUS NUMBERS OF SPINS

N kTC/J

8 1.3

64 1.8

216 2.2

03.0

Another interesting feature of the 8-spin cubic cluster is the existence of an antiferromag-

netic state for J > 0. For example, for y = 0 and x < -1/3, an antiferromagnetic state exists
4with J > 0, which corresponds to a "classical" spiral state; that is, nearest neighbors are

mostly parallel to take advantage of positive J and next nearest neighbors are mostly antipar-

allel. An examination of the susceptibility curve in the region y = 0 and x 1 -/3 shows that the

system begins to order ferromagnetically because of the greater weighting factor for the S = 4
state, but at low temperatures, the system becomes antiferromagnetic because an S = 0, r7 1
state is lower in energy. The condition on x and y for the accidental degeneracy of the S = 4,+ +

r state and an S = 0, r+ state is given by

2 2 2 Z3(1+4x o + 3x ) + 7y + 1Zxy o + Zy + 3x y0 + Zxy =0 (5)
0 0 0 0 0 0o o 0 0

In Fig. 4, the dashed branch of the y = 0 curve indicates this possibility of a "high" temperature

ferromagnetic state. The y = *0.3 calculations also allow this possibility but, for simplicity,

these branches are not plotted in Fig. 4. +

It is also possible to select values of the parameters x and y so that an S = 0, r 3 state is

the lowest antiferromagnetic state of the system for J < 0. The classical analog to this situation

is discussed in Ref. 4.
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APPENDIX A

EIGENFUNCTIONS OF THE 8-SPIN PROBLEM

The notation is as follows:

spin configuration (137) S p (1) a(Z) P (3) a(4) a(5) a(6) 3(7) a (8)

in which c(i) - spin "i" up and p(i) - spin "i" down. Only the maximum MS state is listed, since

the lower M S states can be obtained by application of a lowering operator. For the representa-

tions r 3 only one eigenfunction is given; the other can be obtained by taking the complex con-
jugate of the given function. For r4 and r , only one function is given; the other two can be

obtained by performing the appropriate symmetry operations. When the same representation

occurs several times, a lower case Greek letter is used to distinguish the representation. An

"i" is used to label the state in the case of a multidimensional representation.
The states are eigenstates of S and S but not necessarily of C. The wave function is a

sum of the spin configurations. The coefficient of each spin configuration is given in Table A-I.
The absolute value of the square of the wave function is the last entry in the table.

TABLE A-I

NUMERICAL COEFFICIENTS
OF THE VARIOUS SPIN CONFIGURATIONS

S=3
Spin Configuration 2 4 5

(1) + --

(2) - +

(3) + + +

(4) - - +
(5) - - +

(6) + + +

(7) - +

(8) + -

Iri2  8 8 8

!,i



TABLE A-I (Continued)

NUMERICAL COEFFICIENTS
OF THE VARIOUS SPIN CONFIGURATIONS

S=2

Spin r+ r a r3 r + r3 r;+ + + +a, +
Configuration 1a 1, r011 r3pi rs ,i r 5

(12) + + 1 + +

(23) + + ' +

(34) + + + +

(14) + + U +

(56) + + 1

(67) + + U +

(78) + + 1 +

(58) + + +

(15) + + W2  + +

(26) + + - -

(37) + + U2  + +

(48) + + U - -

(17) --6 -2

(28) -6 +2

(35) -6 -2

(46) -6 +2

__________________________ ____________ ___________________________ ______________ ___________ _____________



TABLE A-I (Continued)

NUMERICAL COEFFICIENTS
OF THE VARIOUS SPIN CONFIGURATIONS

S=2

Spin+ + +++ +
Configuration ria rtp re, I rj r 31 I r5P,

(13) - + 1 1 -2 - +

(24) - + 1 -1 -2 + -

(57) - + 1 -1 2 - +

(68) - + 1 1 2 + -

(27) - + 2 2

(36) - + W 2

(18) - + 2 2

(45) - + 2 -2

(38) - + W

(47) - + W -W

(25) - + . -W

(16) - + W

Sri 2  24 168 12 12 12 24 8 24 24

3£

whoere w 1

1.3



TABLE A-I (Continued)

NUMERICAL COEFFICIENTS
OF THE VARIOUS SPIN CONFIGURATIONS

S=1

Spin rip r-i r'4a,i r'o,i rja,i r4p,i r4y, ra,| r ri
Configuration35P 5

(123) + - 1 - -1/2 -1/3 - -

(134) + - 1 - -1/2 -1/3 - _
(568) + - I + 1/2 1/3 + +
(678) + - 1 + 1/2 1/3 + +

(236) + - -w + + 1/6 + +

(126) - +u2  
- + 1/6 + -

(367) + - - w -.. 1/6 - -

(348) + - - + 1/6 + -

(378) + - w + - -1/6 - +
(158) + - - -.. -1/6 - -

(156) + - w2  + - -1/6 - +

(148) + - -u + + 1/6 + +
(234) - + - I - -1/2 -1/3 + +
(124) - + -1 - -1/2 -1/3 + +
(267) - + u + - -1/6 + -

(145) - + u - + 1/6 - +

(256) - + - - - -1/6 + +
(347) - + _2 + + 1/6 - -

(578) - + - I + 1/2 1/3 - -

(567) - * - 1 + 1/2 1/3 - -

(125) - + -U 2  + + 1/6 - -

(478) - + -w 2  - - -1/6 + +

(237) - + w - + 1/6 - +
(458) - + u + - -1/6 + -

(136) 2 + + -

(138) 2 + + -

(168) 2 +
(368) 2 - - +

(247) -2 + - +
(257) -2 - + -

(245) -2 + - +

(4M7) -2_- +

14



TABLE A-I (Continued)

NUMERICAL COEFFICIENTS
OF THE VARIOUS SPIN CONFIGURATIONS

S=1

Spin r rip q r'4+ ir
Configuration 3 4 r 4 r11  

4 r 501 * t.I r5

(127) + + -w + + -1/2 1/6 - +

(345) + + - + + -1/2 1/6 - +

(456) + + -1 - - 1/2 -1/6 + -
(278) + + -w - - /2 -/6 + -

(235) + + w - + -1/2 1/6 - -

(246) + + I + 1/2 -2/3 -2

(467) + + W2  
- 1/2 -1/6 +

(248) + + 1 + 1/2 -2/3 -2

(147) + + W2  
- + -1/2 1/6 - -

(157) + + I - -1/2 2/3 2

(258) + + + - 1/2 -1/6 + +
(357) + + I - -1/2 /3 2

(238) - - - 2  + + -1/2 1/6 + -

(146) - - -2 + + -1/2 1/6 + -

(268) - - -1 - -1/2 2/3 -2
(135) - - -1 + 1/2 -2/3 2

(356) - - w+ - 1/2 -1/6 - -

(346) - - w - + -1/2 1/6 + +
(128) - - w- + -1/2 1/6 + +

(468) - - -I - -1/2 2/3 -2

(358) - - -W - 1/2 -1/6 - +

(178) - - + - 1/2 -1/6 - -

(167) - - -W - - 1/2 -1/6 - +

(137) - - -1 + 1/2 -2/3 2

I rI 2  48 80 48 16 16 32 24 16/3 16 80 32
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TABLE A-I (Continued)

NUMERICAL COEFFICIENTS
OF THE VARIOUS SPIN CONFIGURATIONS

S=0 __ ___ __ __

Spin + + r + + +
Configuration 1 1 1 r 3r 5 5

(1234) + - 3 -2w2

(5678) + - 3 - 2w2

(1256) + - 3 -2w

(3478) + - 3 - 2w

(2367) + - 3 -2

(1458) + - 3 -2

(2347) - 3

(1348) - 3

(1245) - 3 +

(1236) - 3 +

(3678) - 3 +

(4578) - 3 +

(1568) - 3

(2567) - 3

(1368) + 3 3

(2457) + 3 3

(1278) 8 2

(3456) 8 2

(1467) 8 26

(2358) 8 2w

(1357) 8 2w

(2468) 8 2w2

16



TABLE A-! (Continued)
NUMERICAL COEFFICIENTS

OF THE VARIOUS SPIN CONFIGURATIONS

Spin r +a r+ r+ r- r+ * +
Configuration I rly I r3p,I 51 51

2 w2
(2345) - -2 w

',2 2
(1346) - -2 Q

(1247) - -2 w2  w2

S2 2
(1238) - -2 w w

(1678) - -2 2 w 2

' '2 2(2578) - -2 w

(3568) - -2 w U

(4567) - -2 w2  w2

(1378) - --2 w

(2478) - -2 w w

(3457) - -2 w +

(3468) - -2 w +

(1356) - -2 -

(2456) - -2 -

(1257) - -2 +

(1268) - -2 w w +

(1367) - -2 1 1 - +

(2467) - -2 1 1 + +

(2357) - -2 1 1 + -

(2368) - -2 1 1 - -

(2458) - -2 1 1 - +

(1358) - -2 1 1 + +

(1468) - -2 1 1 + -

(1457) - -2 1 - -
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TABLE A-I (Continued)

NUMERICAL COEFFICIENTS
OF THE VARIOUS SPIN CONFIGURATIONS

5=0

Spin + + + - + + + 
Configuration P y 1  3P' 5 r 5

(1237) + -2 + -W 0

(2348) + -2 + -1 1 +

(1345) + -2 +

(1246) + -2 + -1 1

(2678) + -2 + -

(4568) + -2 + - U

(3467) + -2 + 2  2

(2356) + -2 + 2 2 +

(3578) + -2 + -1 1 -

(1567) + -2 + -1 1 +

(1478) + -2 + - 2  +

(1258) + -2 + 2  2

(1235) + -2 - - 1 I

(2346) + -2 - -u

(1347) + -2 - -1 1

(1248) + -2 - -u w

(1267) + -2 - 2  2

(2568) + -2 - - 1

(1456) + -2 - -W2  W2

(1578) + -2 - -W w

(3458) + -2 -

(3567) + -2 - -

(4678) + -2 - - 1 I

(2378) + -2 - -2 +

jIri 2 16 72 720 24 72 72 24 24

18



APPENDIX B
MATRIX ELEMENTS

In this appendix the matrix elements of the form (rile + x L + yvlr.) are given. The non-

degenerate states can be obtained directly from Table I, so only the matrix elements for degen-

erate states are listed.

For S =

r a - 7 + x-y -j(l-x)rr ri-l
+ 5 NrT4

ra,i (I -x) 0 0 -w(i -y)

raii (I -x) - ( - 4y) 0

r ,i 0 -co(i - y) 0o

r3p, ii -w 2 ( - y) 00

+ + .

r 5a, i r5 , i

r-a, i -(i x) 0 0 (4 - A

r+a, i 01 - ) - W (- -i + x0y

3



For S 1

r ,iir -

r4a,i rpp 4

+ r 3 ( -(

4 8 8r-3-

S i

+ 3

rr, i 520

r+p, i (i - x) -3- ( + x) + y

,i2

rcirb

2z



For S =0

+ 3 _c
r, a -3y-,c 0

+ 3rip -- (l -X) -3 -F --c yS (p1 -

+

r~a, i -Zx- y

2 IL


